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LE’ITER TO THE EDITOR 

Effective medium theory for resistor networks in 
checkerboard geometries 

Martin Soderberg, Per-Olof Jansson and Goran Grimvall 
Department of Theoretical Physics, The Royal Institute of Technology, S-100 44 Stockholm, 
Sweden 

Received 4 April 1985 

Abstract. We have considered the effective resistance of resistor networks which can be 
mapped onto a checkerboard geometry. Each square in the board is represented by four 
resistors of the same magnitude, R,, where R, = R I  or R,, with probabilities p1 and 
p 2  = 1 - p l .  The configuration of the four resistors in a square can be chosen naturally in 
four different ways. For each of these we have calculated the effective medium theory 
(EMT) result for the effective resistance and compared it with the result of a numerical 
calculation for a large random network of the appropriate configuration. The agreement 
between EMT and our simulation is very good. It is worth noticing that the effective 
resistance falls outside the corresponding Hashin-Shtrikman bounds to the effective resist- 
ance of a continuous two-phase material. From EMT we have obtained percolation 
thresholds, which contain transcendental numbers (e.g., 1/ a). 

There is much published work dealing with effective medium theories of resistor 
networks in which each resistor link has been assigned a resistance R1 or R,, with 
probabilities pl and p2(  p1 + p 2  = 1) respectively. However, if one wants to make contact 
between discrete networks and continuous two-phase systems, one should let a ‘grain’ 
in the continuous case correspond to more than a single resistor in the discrete case. 
Figure 1 shows four natural representations when the grain is a square in a chequer- 
board geometry. We shall call these models corner, cross, mid and side, respectively. 
Consider now a checkerboard in which the squares are randomly assigned labels 1 
and 2, with probabilities p ,  and p2.  In each square four resistors are placed, with the 
configuration a (figure 1). The resistors in a single square are all given the values R1 
or R,, depending on the label of that square. In this way a discrete network is formed. 
Three other types of networks can be obtained when the resistors in each square are 
chosen as one of the configurations (b)-(d) (figure 1). 

It is the purpose of this letter to derive the effective resistance for the networks in 
the effective medium theory (EMT) and to compare with numerical calculations. 

The effective resistance of the random network is given by a homogeneous network 
with the same geometry and with a resistance R,  in every link. Standard methods 
(Turban 1978, Joy and Strieder 1978, Jansson and Grimvall 1985), which rely upon 
Thevenin’s theorem for electric circuits, will be used to derive R,. 

An electric field E is applied parallel to e,, see figure 1. This leads to a current io 
through the link AC. We change.al1 four resistors in a particular square to R1 with 
probability p1 and to R ,  with probability p , .  The current in the link BD is 0. The 
change of resistors from R,  to R ,  induces the same changes in the currents of the 
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Figure 1. Discretisation models for a square: corner (a), cross (b), mid (c), side (d). 

network as if an EMF equal to Au, = 2i0( R ,  - R I )  were added in the link AC, see figure 
2 .  The new current through AC becomes i , = i o ( R , + 2 R , ) / ( R , + 2 R , ) .  R, is the 
resistance between A and C when the four R ,  resistors in the grain are replaced by 
infinite resistances. 

If the four resistors were changed from R ,  to R2 instead, the new current through 
AC would be i2 = io( R, + 2 R m ) / (  R, + 2 R2) .  In the effective medium theory, the value 
of R ,  is chosen so that the average current is unchanged. 

R, is derived by noting that the resistance between two points A and C in the 
homogeneous network, Rh, equals R, in parallel with 2R,. Rh is found (van der Pol 
and Bremmer 1964) to be 2R,( 1 - 2 / 7 r ) .  This yields R,  = R,( 7r - 2 ) .  If we take 
R, = aR,, where a = 7~ - 2 ,  equation (1) can be written as 

a RZ, + R,[ R I  (2p2 - p1 (Y ) + R2( 2p, - p z a ) ]  - 2 RI R2 = 0.  ( 2 )  

A U .  

Figure 2. Equivalent network used to derive the effective medium resistance R,. 
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This equation remains the same for cases l (b)-(d) ;  only the value of a will differ. 

a = r - 2  corner ( 3 a )  

a = 2( r - 1 )  cross ( 3 6 )  

a = 4 / ( r - 2 )  mid 

a = 2 / ( n - l )  side. 

The effective medium result of the corner model has been obtained earlier by Butcher 
(1975).  

The four methods of discretisation can be divided into two dual pairs, corner f, 
mid and cross e, side. The networks generated by these models are dual to each other 
in the following sense (Straley 1977) 

R(Pl ,P2)RD(P2,P1)  = RIR2, (4) 

where D stands for ‘duality’, and R (  p , ,  p 2 )  is the effective resistance of the homogeneous 
network. This relation also holds for our EMT values of the effective resistance. The 
dual network can be obtained from the original (primal) one by applying a simple 
duality transformation (Straley 1977). 

We shall now use the EMT result, equation ( 2 ) ,  to derive the percolation limits for 
the four networks described. Let R I  >> R2.  If p 2  < a / ( 2 +  a ) ,  R ,  = R l [ l  - p 2 ( 2 +  a ) / a l  
and i fp2> a / ( 2 +  a )  then R ,  = 2 R 2 / [ p 2 ( 2 +  a )  - a ] .  This gives a percolation threshold 
p2c = a / ( 2 +  a ) .  The duality relation ( 3 )  gives the percolation threshold for the dual 
network p g  = 1 - p 2 c .  The percolation thresholds are 

p2c= 1 - 2 / n  corner ( 5 a )  

p 2 c = 1 - l / r  cross ( 5 b )  

P 2 c  = 21 77 mid ( 5 c )  

p2c= 1/r side. ( 5 4  

In our numerical calculations we generated large random networks (200 x 200 
resistors) of types (a)-(d) (see figure 1). The effective resistance was obtained by an 
iterative method which minimises the entropy production (Jansson and Grimvall 1985). 
The EMT results and those given by our numerical calculations are shown together 
with the Hashin-Shtrikman (HS) bounds (Hashin and Shtrikman 1962) in figure 3. 
The HS bounds apply to the effective resistivity of statistically isotropic and 
homogeneous continuous materials which are two-dimensional and consist of two 
phases. We have identified pl with the surface fraction of phase 1 ,  and R ,  with the 
resistivity p1 of phase 1 .  Perhaps the most striking result is that all four models, as 
well as numerical results, violate the Hashin-Shtrikman bounds. It indicates that a 
discretisation using few resistors to represent a grain may be quite misleading. This 
result will be dealt with in detail in a forthcoming paper. 

We have established the effective resistance and the percolation concentrations of 
four resistor networks. These have been constructed using methods which emerge 
naturally from a discretisation of the disordered checkerboard geometry. 

The effective medium theory gives an effective resistance which is in good agreement 
with our results from an iterative numerical calculation on random networks of the 
appropriate geometry. The approximate percolation limits for the concentration p 2 ,  
as derived from the EMT result, equation (21, are 0.36, 0.68, 0.64, 0.32, for the four 
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Figure 3. Effective resistance, R,, as given by EMT (-) and numerical calculations (01, 
for the random networks generated by the corner ( a )  and cross ( b )  models, applied to an 
irregular checkerboard. T h e  Hashin-Shtrikman bounds (- - -) are given for comparison. 
R , /  R ,  = 10. 

networks, respectively. This should be compared with p c  = 0.5 for the continuous case 
(Dykhne 1970). 

It should be noticed that the results of the EMT for our discrete resistor networks 
contain the quantity T. Neither the EMT results for the discrete bond model (Jansson 
and Grimvall 1985) nor EMT results for continuous materials (Landauer 1978, Brugge- 
man 1935) contain transcendental numbers. This indicates the non-trivial nature of 
our netork problem. 

Both the EMT and the numerical calculations yield results for the effective resistance, 
which violate the corresponding Hashin-Shtrikman bounds to the resistance in the 
continuous case. 

The authors are grateful to H Desaix for making us aware of the work by van der Pol 
and Bremmer. We would also like to thank G Petersson for drawing our attention to 
an unpublished report on network resistances by P-0 Brundell. This work has been 
supported in part by the Swedish Natural Science Research Council. 
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