Effective medium theory for resistor networks in checkerboard geometries

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 18 L633
(http://iopscience.iop.org/0305-4470/18/10/013)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 17:04

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Effective medium theory for resistor networks in checkerboard geometries

Martin Söderberg, Per-Olof Jansson and Göran Grimvall
Department of Theoretical Physics, The Royal Institute of Technology, S-100 44 Stockholm, Sweden

Received 4 April 1985

Abstract

We have considered the effective resistance of resistor networks which can be mapped onto a checkerboard geometry. Each square in the board is represented by four resistors of the same magnitude, R_{i}, where $R_{i}=R_{1}$ or R_{2}, with probabilities p_{1} and $p_{2}=1-p_{1}$. The configuration of the four resistors in a square can be chosen naturally in four different ways. For each of these we have calculated the effective medium theory (EMT) result for the effective resistance and compared it with the result of a numerical calculation for a large random network of the appropriate configuration. The agreement between EMT and our simulation is very good. It is worth noticing that the effective resistance falls outside the corresponding Hashin-Shtrikman bounds to the effective resistance of a continuous two-phase material. From EMT we have obtained percolation thresholds, which contain transcendental numbers (e.g., $1 / \pi$).

There is much published work dealing with effective medium theories of resistor networks in which each resistor link has been assigned a resistance R_{1} or R_{2}, with probabilities p_{1} and $p_{2}\left(p_{1}+p_{2}=1\right)$ respectively. However, if one wants to make contact between discrete networks and continuous two-phase systems, one should let a 'grain' in the continuous case correspond to more than a single resistor in the discrete case. Figure 1 shows four natural representations when the grain is a square in a chequerboard geometry. We shall call these models corner, cross, mid and side, respectively. Consider now a checkerboard in which the squares are randomly assigned labels 1 and 2 , with probabilities p_{1} and p_{2}. In each square four resistors are placed, with the configuration a (figure 1). The resistors in a single square are all given the values R_{1} or R_{2}, depending on the label of that square. In this way a discrete network is formed. Three other types of networks can be obtained when the resistors in each square are chosen as one of the configurations (b)-(d) (figure 1).

It is the purpose of this letter to derive the effective resistance for the networks in the effective medium theory (EMT) and to compare with numerical calculations.

The effective resistance of the random network is given by a homogeneous network with the same geometry and with a resistance R_{m} in every link. Standard methods (Turban 1978, Joy and Strieder 1978, Jansson and Grimvall 1985), which rely upon Thevenin's theorem for electric circuits, will be used to derive R_{m}.

An electric field E is applied parallel to e_{1}, see figure 1 . This leads to a current i_{0} through the link AC. We change all four resistors in a particular square to R_{1} with probability p_{1} and to R_{2} with probability p_{2}. The current in the link BD is 0 . The change of resistors from R_{m} to R_{1} induces the same changes in the currents of the

Figure 1. Discretisation models for a square: corner (a), cross (b), mid (c), side (d).
network as if an EMF equal to $\Delta u_{1}=2 i_{0}\left(R_{m}-R_{1}\right)$ were added in the link AC, see figure 2. The new current through AC becomes $i_{1}=i_{0}\left(R_{z}+2 R_{m}\right) /\left(R_{z}+2 R_{1}\right) . R_{z}$ is the resistance between A and C when the four R_{1} resistors in the grain are replaced by infinite resistances.

If the four resistors were changed from R_{m} to R_{2} instead, the new current through AC would be $i_{2}=i_{0}\left(R_{z}+2 R_{m}\right) /\left(R_{z}+2 R_{2}\right)$. In the effective medium theory, the value of R_{m} is chosen so that the average current is unchanged.

$$
\begin{equation*}
p_{1} i_{0} \frac{R_{z}+2 R_{m}}{R_{z}+2 R_{1}}+p_{2} i_{0} \frac{R_{z}+2 R_{m}}{R_{z}+2 R_{2}}=i_{0} \tag{1}
\end{equation*}
$$

R_{z} is derived by noting that the resistance between two points A and C in the homogeneous network, R_{h}, equals R_{z} in parallel with $2 R_{m} . R_{h}$ is found (van der Pol and Bremmer 1964) to be $2 R_{m}(1-2 / \pi)$. This yields $R_{z}=R_{m}(\pi-2)$. If we take $R_{z}=\alpha R_{m}$, where $\alpha=\pi-2$, equation (1) can be written as

$$
\begin{equation*}
\alpha R_{m}^{2}+R_{m}\left[R_{1}\left(2 p_{2}-p_{1} \alpha\right)+R_{2}\left(2 p_{1}-p_{2} \alpha\right)\right]-2 R_{1} R_{2}=0 \tag{2}
\end{equation*}
$$

Figure 2. Equivalent network used to derive the effective medium resistance R_{m}.

This equation remains the same for cases 1 (b)-(d); only the value of α will differ.

$$
\begin{array}{ll}
\alpha=\pi-2 & \text { corner } \\
\alpha=2(\pi-1) & \text { cross } \\
\alpha=4 /(\pi-2) & \text { mid } \\
\alpha=2 /(\pi-1) & \text { side } \tag{3d}
\end{array}
$$

The effective medium result of the corner model has been obtained earlier by Butcher (1975).

The four methods of discretisation can be divided into two dual pairs, corner \leftrightarrow mid and cross \leftrightarrow side. The networks generated by these models are dual to each other in the following sense (Straley 1977)

$$
\begin{equation*}
R\left(p_{1}, p_{2}\right) R^{\mathrm{D}}\left(p_{2}, p_{1}\right)=R_{1} R_{2} \tag{4}
\end{equation*}
$$

where D stands for 'duality', and $R\left(p_{1}, p_{2}\right)$ is the effective resistance of the homogeneous network. This relation also holds for our emt values of the effective resistance. The dual network can be obtained from the original (primal) one by applying a simple duality transformation (Straley 1977).

We shall now use the EMT result, equation (2), to derive the percolation limits for the four networks described. Let $R_{1} \gg R_{2}$. If $p_{2}<\alpha /(2+\alpha), R_{m} \approx R_{1}\left[1-p_{2}(2+\alpha) / \alpha\right]$ and if $p_{2}>\alpha /(2+\alpha)$ then $R_{m} \approx 2 R_{2} /\left[p_{2}(2+\alpha)-\alpha\right]$. This gives a percolation threshold $p_{2 c}=\alpha /(2+\alpha)$. The duality relation (3) gives the percolation threshold for the dual network $p_{2 \mathrm{c}}^{\mathrm{D}}=1-p_{2 \mathrm{c}}$. The percolation thresholds are

$$
\begin{array}{ll}
p_{2 \mathrm{c}}=1-2 / \pi & \text { corner } \\
p_{2 c}=1-1 / \pi & \text { cross } \\
p_{2 \mathrm{c}}=2 / \pi & \text { mid } \\
p_{2 \mathrm{c}}=1 / \pi & \text { side. } \tag{5d}
\end{array}
$$

In our numerical calculations we generated large random networks (200×200 resistors) of types (a)-(d) (see figure 1). The effective resistance was obtained by an iterative method which minimises the entropy production (Jansson and Grimvall 1985). The emt results and those given by our numerical calculations are shown together with the Hashin-Shtrikman (HS) bounds (Hashin and Shtrikman 1962) in figure 3. The Hs bounds apply to the effective resistivity of statistically isotropic and homogeneous continuous materials which are two-dimensional and consist of two phases. We have identified p_{1} with the surface fraction of phase 1 , and R_{1} with the resistivity ρ_{1} of phase 1 . Perhaps the most striking result is that all four models, as well as numerical results, violate the Hashin-Shtrikman bounds. It indicates that a discretisation using few resistors to represent a grain may be quite misleading. This result will be dealt with in detail in a forthcoming paper.

We have established the effective resistance and the percolation concentrations of four resistor networks. These have been constructed using methods which emerge naturally from a discretisation of the disordered checkerboard geometry.

The effective medium theory gives an effective resistance which is in good agreement with our results from an iterative numerical calculation on random networks of the appropriate geometry. The approximate percolation limits for the concentration p_{2}, as derived from the EMT result, equation (2), are $0.36,0.68,0.64,0.32$, for the four

Figure 3. Effective resistance, R_{m}, as given by EMT (一) and numerical calculations (O), for the random networks generated by the corner (a) and cross (b) models, applied to an irregular checkerboard. The Hashin-Shtrikman bounds (--) are given for comparison. $R_{1} / R_{2}=10$.
networks, respectively. This should be compared with $p_{c}=0.5$ for the continuous case (Dykhne 1970).

It should be noticed that the results of the EMT for our discrete resistor networks contain the quantity π. Neither the Emt results for the discrete bond model (Jansson and Grimvall 1985) nor EMT results for continuous materials (Landauer 1978, Bruggeman 1935) contain transcendental numbers. This indicates the non-trivial nature of our netork problem.

Both the EMT and the numerical calculations yield results for the effective resistance, which violate the corresponding Hashin-Shtrikman bounds to the resistance in the continuous case.

The authors are grateful to H Desaix for making us aware of the work by van der Pol and Bremmer. We would also like to thank G Petersson for drawing our attention to an unpublished report on network resistances by P-O Brundell. This work has been supported in part by the Swedish Natural Science Research Council.

References

[^0]
[^0]: Bruggeman D A G 1935 Ann. Phys. 24 636-79
 Butcher P N 1975 J. Phys. C: Solid Stae Phys. 8 L324-7
 Dykhne A M 1971 Sov. Phys.-JETP 32 63-5
 Hashin Z and Shtrikman S 1962 J. Appl. Phys. 33 3125-3
 Jansson P-O and Grimvall G 1985 J. Phys. D: Appl. Phys. 18 893-900
 Joy T and Strieder W 1978 J. Phys. C: Solid State Phys. 11 L867-70
 Landauer R 1978 AIP Conf. Proc. ed J C Garland and D B Tanner 40 2-43
 Straley J P 1977 Phys. Rev. B 15 5733-7
 Turban L 1978 J. Phys. C: Solid State Phys. 11 449-59
 van der Pol B and Bremmer H 1964 Operational Calculus (Cambridge: CUP)

